8 research outputs found

    Dynamic Collection Scheduling Using Remote Asset Monitoring: Case Study in the UK Charity Sector

    Get PDF
    Remote sensing technology is now coming onto the market in the waste collection sector. This technology allows waste and recycling receptacles to report their fill levels at regular intervals. This reporting enables collection schedules to be optimized dynamically to meet true servicing needs in a better way and so reduce transport costs and ensure that visits to clients are made in a timely fashion. This paper describes a real-life logistics problem faced by a leading UK charity that services its textile and book donation banks and its high street stores by using a common fleet of vehicles with various carrying capacities. Use of a common fleet gives rise to a vehicle routing problem in which visits to stores are on fixed days of the week with time window constraints and visits to banks (fitted with remote fill-monitoring technology) are made in a timely fashion so that the banks do not become full before collection. A tabu search algorithm was developed to provide vehicle routes for the next day of operation on the basis of the maximization of profit. A longer look-ahead period was not considered because donation rates to banks are highly variable. The algorithm included parameters that specified the minimum fill level (e.g., 50%) required to allow a visit to a bank and a penalty function used to encourage visits to banks that are becoming full. The results showed that the algorithm significantly reduced visits to banks and increased profit by up to 2.4%, with the best performance obtained when the donation rates were more variable

    Multi-Objective AI Planning: Evaluating DaEYAHSP on a Tunable Benchmark

    Get PDF
    Abstract. All standard Artifical Intelligence (AI) planners to-date can only handle a single objective, and the only way for them to take into account multiple objectives is by aggregation of the objectives. Furthermore, and in deep contrast with the single objective case, there exists no benchmark problems on which to test the algorithms for multi-objective planning. Divide-and-Evolve (DaE)isanevolutionaryplannerthatwonthe(singleobjective) deterministic temporal satisficing track in the last International Planning Competition. Even though it uses intensively the classical (and hence single-objective) planner YAHSP (Yet Another Heuristic Search Planner), it is possible to turn DaEYAHSP into a multi-objective evolutionary planner. A tunable benchmark suite for multi-objective planning is first proposed, andtheperformances ofseveralvariants ofmulti-objectiveDaEYAHSP are compared on different instances of this benchmark, hopefully paving the road to further multi-objective competitions in AI planning.

    Multi-Objective AI Planning: Comparing Aggregation and Pareto Approaches

    Get PDF
    Abstract. Most real-world Planning problems are multi-objective, trying to minimize both the makespan of the solution plan, and some cost of the actions involved in the plan. But most, if not all existing approaches are based on single-objective planners, and use an aggregation of the objectives to remain in the single-objective context. Divide-and-Evolve is an evolutionary planner that won the temporal deterministic satisficing track at the last International Planning Competitions (IPC). Like all Evolutionary Algorithms (EA), it can easily be turned into a Pareto-based Multi-Objective EA. It is however important to validate the resulting algorithm by comparing it with the aggregation approach: this is the goal of this paper. The comparative experiments on a recently proposed benchmark set that are reported here demonstrate the usefulness of going Pareto-based in AI Planning.
    corecore